

SOT-23

Pin Definition:

- 3,69
- Reference
 Cathode
- Cathode
 Anode

Pin Definition:

- 1. Reference
- 2. Anode
- 3. Cathode

General Description

TS432 series is a three-terminal adjustable shunt regulator with specified thermal stability. The output voltage may be set to any value between V_{REF} (approximately 1.24V) and 18V with two external resistors. TS432 series has a typical output impedance of 0.05Ω . Active output circuitry provides a very sharp turn-on characteristic, making TS432 series excellent replacement for zener diode in many applications.

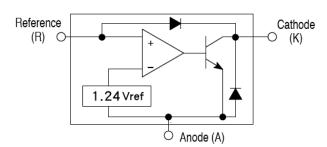
Features

- Precision Reference Voltage TS432A – 1.24V±1% TS432B – 1.24V±0.5%
- Minimum Cathode Current for Regulation: 20µA(typ.)
- Equivalent Full Range Temp. Coefficient: 50ppm/ °C
- Programmable Output Voltage up to 18V
- Fast Turn-On Response
- Sink Current Capability of 80μA to 100mA
- Low Dynamic Output Impedance: 0.05Ω
- Low Output Noise
- Halogen Free Available

Applications

- Voltage Monitor
- Delay Timmer
- Constant –Current Source/Sink
- High-Current Shunt Regulator
- Crow Bar
- Over-Voltage / Under-Voltage Protection

Ordering Information


Part No.	Package	Packing
TS432xCX RF	SOT-23	3kpcs / 7" Reel
TS432xCX RFG	SOT-23	3kpcs / 7" Reel
TS432 <u>x</u> CT B0	TO-92	1kpcs / Bulk
TS432 <u>x</u> CT A3	TO-92	2kpcs / Ammo
TS432xCT B0G	TO-92	1kpcs / Bulk
TS432xCT A3G	TO-92	2kpcs / Ammo

Note: Where $\underline{\mathbf{x}}$ denotes voltage tolerance

A: ±1%, B: ±0.5%

"G" denotes for Halogen free products

Block Diagram

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

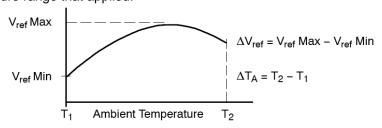
Parameter	Symbol	Limit	Unit
Cathode Voltage (Note 1)	V_{KA}	18	V
Continuous Cathode Current Range	I _K	100	mA
Reference Input Current Range	I _{REF}	3	mA
Power Dissipation	P _D	0.35	W
Junction Temperature	TJ	+150	°C
Operation Temperature Range	T _{OPER}	0 ~ +70	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note 1: Voltage values are with respect to the anode terminal unless otherwise noted.

Recommended Operating Condition

Parameter	Symbol	Limit	Unit
Cathode Voltage (Note 1)	V_{KA}	16	V
Continuous Cathode Current Range	I _K	100	mA

Electrical Characteristics (T_A=25°C unless otherwise noted)


Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
Reference voltage	TS432A	V _{REF}	V _{KA} =V _{REF} , I _K =10mA	1.227	1.240	1.252	V
Neierence voitage	TS432B	V REF	(Figure 1)	1.233	1.240	1.246	V
Deviation of reference voltage	e input	ΔV_{REF}	$V_{KA} = V_{REF}$, $I_{K} = 10$ mA $T_{A} = $ full range (Figure 1)		10	25	mV
Radio of change in V change in cathode V		$\Delta V_{REF}/\Delta V_{KA}$	I_{KA} =10mA, V_{KA} = 16V to V_{REF} (Figure 2)		-1.0	-2.7	mV/V
Reference Input curre	ent	I _{REF}	R1=10K Ω , R2= $\frac{1}{2}$, I _{KA} =10mA T _A = full range (Figure 2)		0.25	0.5	μΑ
Deviation of referenc current, over temp.	e input	ΔI_{REF}	R1=10K Ω , R2= $\frac{1}{2}$, I _{KA} =10mA T _A = full range (Figure 2)		0.04	0.8	μΑ
Off-state Cathode Cu	ırrent	I _{KA} (off)	V _{REF} =0V (Figure 3), V _{KA} =16V		0.125	0.5	μΑ
Dynamic Output Imp	edance	Z _{KA}	f<1KHz, V _{KA} =V _{REF} I _{KA} =1mA to 100mA (Figure 1)		0.2	0.4	Ω
Minimum Operating (Current	Cathode	I _{KA(MIN)}	V _{KA} =V _{REF} (Figure 1)		20	80	μΑ

^{*} The deviation parameters ΔV_{REF} and ΔI_{REF} are defined as difference between the maximum value and minimum value

obtained over the full operating ambient temperature range that applied.

* The average temperature coefficient of the reference input voltage, αV_{REF} is defined as:

$$\alpha V_{ref} \left(\frac{ppm}{^{\circ}C} \right) = \frac{\left(\frac{(\Delta V_{ref})}{V_{ref} (T_{A} = 25^{\circ}C)} \times 10^{6} \right)}{\Delta T_{\Delta}}$$

Where: **T2-T1** = full temperature change.

 αV_{REF} can be positive or negative depending on whether V_{REF} Min. or V_{REF} Max occurs at the lower ambient temperature. Example: ΔV_{REF} =7.2mV and the slope is positive, V_{REF} =1.241V at 25°C, ΔT =125°C

$$\alpha V_{ref} \left(\frac{ppm}{{}^{\circ}C} \right) = \frac{\frac{0.0072}{1.241} \times 10^{6}}{125} = 46 \text{ ppm/}^{\circ}C$$

* The dynamic impedance ZKA is defined as:

$$\left| z_{KA} \right| = \frac{\Delta V_{KA}}{\Delta I_{K}}$$

* When the device operating with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of

the circuit is given by:

Test Circuits

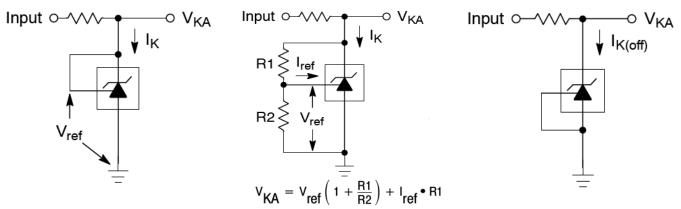


Figure 1: $V_{KA} = V_{REF}$

Figure 2: $V_{KA} > V_{REF}$

Figure 3: Off-State Current

Additional Information – Stability

When TS432 series is used as a shunt regulator, there are two options for selection of C_L , are recommended for optional stability:

- A) No load capacitance across the device, decouple at the load.
- B) Large capacitance across the device, optional decoupling at the load.

The reason for this is that TS432 series exhibits instability with capacitances in the range of 10nF to 1μ F (approx.) at light cathode current up to 3mA(typ). The device is less stable the lower the cathode voltage has been set for. Therefore while the device will be perfectly stable operating at a cathode current of 10mA (approx.) with a 0.1μ F capacitor across it, it will oscillate transiently during start up as the cathode current passes through the instability region. Select a very low capacitance, or alternatively a high capacitance (10μ F) will avoid this issue altogether. Since the user will probably wish to have local decoupling at the load anyway, the most cost effective method is to use no capacitance at all directly across the device. PCB trace/via resistance and inductance prevent the local load decoupling from causing the oscillation during the transient start up phase.

Note: if the TS432 series is located right at the load, so the load decoupling capacitor is directly across it, then this capacitor will have to be $\leq 1nF$ or $\geq 10\mu F$.

Applications Examples

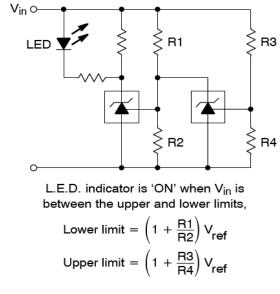


Figure 4: Voltage Monitor

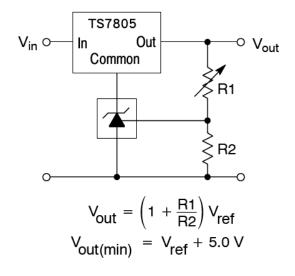


Figure 5: Output Control for Three Terminal Fixed Regulator

Applications Examples (Continue)

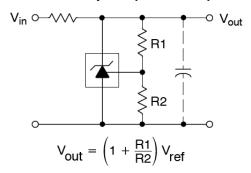


Figure 6: Shunt Regulator

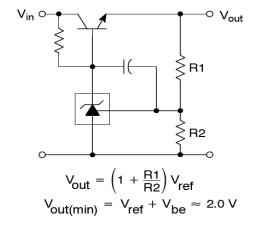


Figure 8: Series Pass Regulator

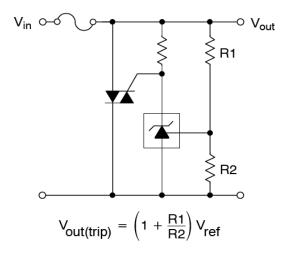


Figure 10: TRIAC Crowbar

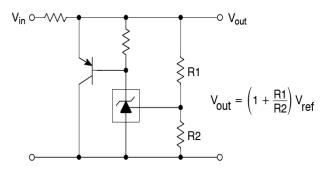


Figure 7: High Current Shunt Regulator

Figure 9: Constant Current Source

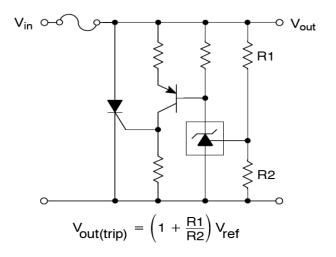
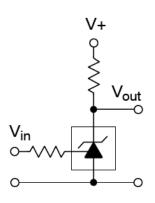
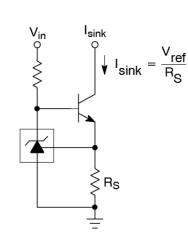



Figure 11: SCR Crowbar



Applications Examples (Continue)

Vin	Vout
<vref< td=""><td>V+</td></vref<>	V+
>Vref	≈0.74V

Figure 13: Constant Current Sink

Figure 14: Delay Timer

Figure 12: Single-Supply Comparator with Temperature-Compensated Threshold

Typical Performance Characteristics

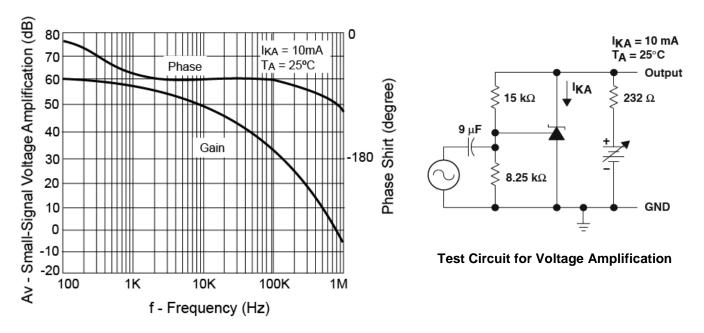


Figure 15: Small-Signal Voltage Gain and Phase Shift vs. Frequency

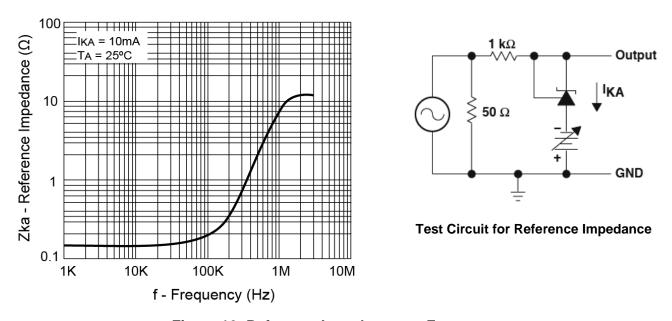
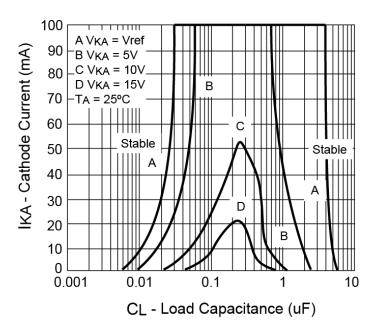
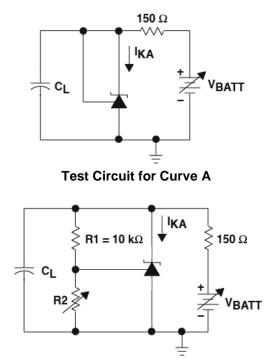
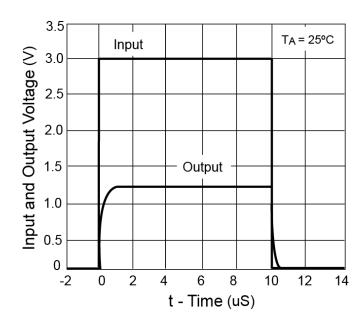
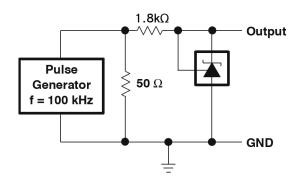



Figure 16: Reference Impedance vs. Frequency



Typical Performance Characteristics




The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial VKA and IKA conditions with CL=0. VBATT and CL then were adjusted to determine the ranges of stability.

Test Circuit for Curve B, C and D

Figure 17: Stability Boundary Condition

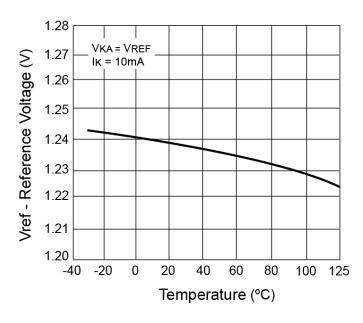

Test Circuit for Pulse Response, lk=1mA

Figure 18: Pulse Response

Electrical Characteristics

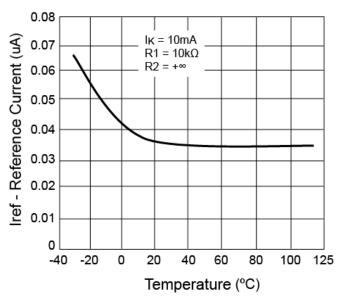
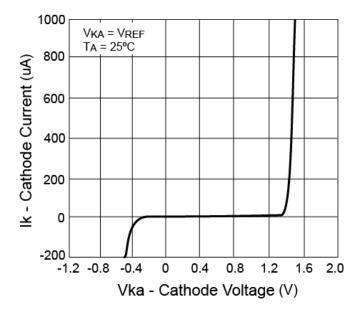
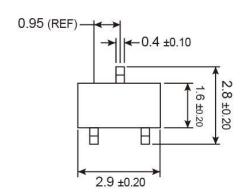
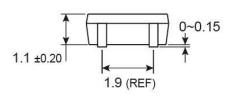
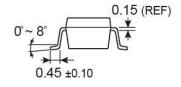


Figure 19: Reference Voltage vs. Temperature

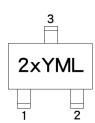
Figure 20: Reference Current vs. Temperature


Figure 21: Cathode Current vs. Cathode Voltage



SOT-23 Mechanical Drawing



Unit: Millimeters

Marking Diagram

2 = Device Code

X = Tolerance Code

 $(A = \pm 1\%, B = \pm 0.5\%)$

Y = Year Code

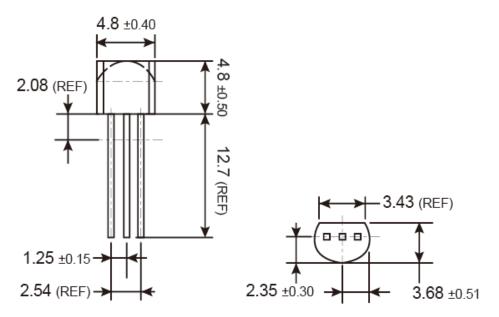
M = Month Code

(**A**=Jan, **B**=Feb, **C**=Mar, **D**=Apl, **E**=May, **F**=Jun, **G**=Jul, **H**=Aug, **I**=Sep,

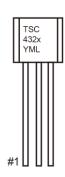
J=Oct, K=Nov, L=Dec)

= Month Code for Halogen Free Product

(O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep,


X=Oct, Y=Nov, Z=Dec)

L = Lot Code



TO-92 Mechanical Drawing

Unit: Millimeters

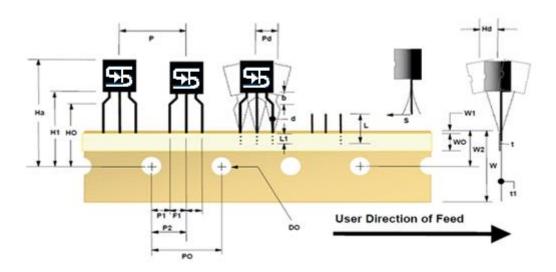
Marking Diagram

X = Tolerance Code($A = \pm 1\%$, $B = \pm 0.5\%$)

Y = Year Code

M = Month Code

(**A**=Jan, **B**=Feb, **C**=Mar, **D**=Apl, **E**=May, **F**=Jun, **G**=Jul, **H**=Aug, **I**=Sep, **J**=Oct, **K**=Nov, **L**=Dec)


Month Code for Halogen Free Product
 (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep,
 X=Oct, Y=Nov, Z=Dec)

L = Lot Code

TO-92 Ammo Pack Mechanical Drawing

Tape Dimension

ITEM DESCRIPTION	SYMBOL	DIMENSION (mm)
Base of Package to Lead Bend	b	2.4892 (typ)
Component Height	На	23.5712 (+/- 0.635)
Lead Clinch Height	НО	16.002 (+/- 0.508)
Component Base Height	H1	18.9992 (+/- 0.508)
Component Alignment (side/side)	Pd	1.016 (max)
Component Alignment (front/back)	Hd	0.7874 (max)
Component Pitch	Р	12.7 (+/- 0.508)
Feed Hole Pitch	PO	12.7 (+/- 0.2032)
Hole Center to First Lead	P1	3.81 (+0.2286, -0.254)
Hole Center to Component Center	P2	6.2738 (+/- 0.1778)
Lead Spread	F1/F2	2.6416 (+/- 0.254)
Lead Thickness	d	0.4572 (+0.0508, -0.0762)
Cut Lead Length	L	10.8966 (max)
Taped Lead Length	L1	5.3086 (+1.2954, -1.3208)
Taped Lead Thickness	t	0.8128 (+/- 0.1524)
Carrier Tape Thickness	t1	0.5334 (+/- 0.1524)
Carrier Tape Width	W	17.9832 (+0.508, -0.4826)
Hold - down Tape Width	WO	5.9944 (+/- 0.3048)
Hold - down Tape position	W1	0.889 (max)
Feed Hole Position	W2	9.144 (+/- 0.635)
Sprocket Hole Diameter	DO	3.9878 (+0.2032, -0.1778)
Lead Spring Out	S	0.1016 (max)

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.